FASTMET Iron Processing

The FASTMET process was developed in the 90’s by several key industry players to create a more cost effective iron making process to combat rising natural gas prices which fueled more established processing in place since the 60’s.
The FASTMET process is simple and unique and involves rapid heating which in turn accomplishes a rapid reduction reaction. Continue reading

Dispersion Strengthened Copper Alloys: Part Two

Coppers range of advantageous characteristics a quite well known including high electrical and thermal conductivity, excellent corrosion resistance to name but a few.
Dispersion strengthened coppers add the advantage of higher strengths which means they can be used for a range or applications such as welding consumables. Continue reading

Introduction to Additive Manufacturing: Part Two

Additive manufacturing is a relatively recent manufacturing method which has become a key area of interest in multiple industrial sectors.
As the application and growth of AM occurs, several systems to classify the AM processes have developed, including one proposed by the American Society for Testing and Materials (ASTM) F42 Committee. Continue reading

Manganese Bronze Alloys

Bronze alloys exhibit very good toughness, strength, corrosion resistance, electrical conductivity, and thermal conductivity.
As one of the oldest alloyed materials a range of applications exist to take advantage of the various positive characteristics such as high load bearings, bushings and hydraulic cylinder parts. Continue reading

Hardfacing Non-Ferrous Alloys

The prime function of Hardfacing materials is to protect a component or other material against the forces of wear.
Most hardfacing alloys are iron, nickel, or cobalt-base and can be used in a variety of forms including powder, solid welding rods or wires and tubular rods or wires. Continue reading

Dispersion Strengthened Copper (DSC) Alloys: Part One

Dispersion strengthening of any material is done with the aim to create a composite of superior physical properties via the dispersion of oxide particles in the metallic matrix.
High energy ball milling provides a repetitive fracture/weld method to achieve a homogeneous dispersoid distribution. Continue reading

Plasma Nitriding of Steels: Part One

Plasma nitriding improves the wear resistance of a material by effectively altering the surface microstructure while maintaining adequate substrate properties.
Nitriding occurs when a bias voltage is applied to the work piece causing ions to collide with the surface and consequently creating the nitride effect. Continue reading

The ROMELT Process

The Romelt process is born and driven by the ever present need to design effective steel and iron making processes which are much cleaner in respect to their environmental impact.
First industrial Romelt plant is currently being constructed in Burma and is expected to have a design annual capacity of 200,000 tpy. Continue reading

Electro-Slag Welding (ESW) of Steels

Electro-slag welding is a primary method for cast weld assemblies of heavy sections since one of the key characteristics is its suitably high deposition rate.
Some key advantages include a single pass process, weld symmetry, high welding speed, simple joint preparation and low flux composition. Continue reading