Introduction to Additive Manufacturing: Part Two

Additive manufacturing is a relatively recent manufacturing method which has become a key area of interest in multiple industrial sectors.
As the application and growth of AM occurs, several systems to classify the AM processes have developed, including one proposed by the American Society for Testing and Materials (ASTM) F42 Committee. Continue reading

Titanium-Nickel Shape Memory Alloys

Shape memory alloys are categorized by two very unique properties; pseudo-elasticity (PE), and the shape memory effect (SME).
Since SMA’s are hugely versatile and functional materials they have a range of important applications to fulfill including bone transplant replacements, sensors, antennas for mobile phones and much more. Continue reading

Boronization of Titanium Alloys

Boronizing is a surface treatment by which boron atoms are diffused into the surface of the metal in quantities exceeding the solubility limit.
Hardness is improved and thus wear resistance increased as well as a number of other advantages such as corrosion and oxidization resistance. Continue reading

Introduction to Additive Manufacturing: Part One

Additive manufacturing is a relatively recent manufacturing method which has become a key area of interest in multiple industrial sectors.
Deriving from CAD models the process can be used to create solid yet highly complex parts and pushes towards a tool-less manufacturing environment meaning improved quality and better efficiency in many cases. Continue reading

Electro-Slag Welding (ESW) of Titanium Alloys: Part Two

Due to its well-known superior strength to weight ratios, titanium has become a more and more critical material choice in aerospace applications which require heavy loading.
Due to titanium’s high chemical activity welding can be a real challenge but to overcome this, new technologies are being developed which uses the slag pool and argon to shield the weld site from interstitial element contamination. Continue reading

Brazing of Titanium and Titanium Alloys: Part One

Titanium and its alloys are well known for their high-strength and corrosion resistant properties but one distinct disadvantage is the challenges associated with bonding them with other materials. Brazing could provide a solution to these challenges since only the filler material is melted in the process therefore aiding dissimilar material bonding due to little or no effect on the two main subject materials. Continue reading

Titanium Powder Metallurgy Alloys

Titanium powder metallurgy can produce high performance and low cost titanium parts. Compared with those by conventional processes, high performance P/M titanium parts have many advantages: excellent mechanical properties, near-net-shape and low cost, being easy to fabricate complex shape parts, full dense material, no inner defect, fine and uniform microstructure, no texture, no segregation, low internal stress, excellent stability of dimension and being easy to fabricate titanium based composite parts.

Continue reading

Forming of Titanium and Titanium Alloys: Part Two

The commercial production of titanium plate, sheet, strips, and bars is carried out using hot and cold rolling mills to achieve the necessary reductions and desired shapes. Rolling may be defined as the reduction of the cross-sectional area of a piece by compressive forces applied through rolls.

Cold rolling is carried out at temperatures below which the rate of strain hardening is greater than the rate of recrystallization. When reduction is carried out above such a temperature, the process is termed hot rolling. The major quantity of titanium plate, sheet, strips and bars is processed using hot rolling techniques.
Continue reading

Forming of the Titanium and Titanium Alloys: Part One

Hot and cold working or shaping of the titanium alloys involves forging, rolling, extrusion, drawing, spinning, and other such operations.
Operations such as forging and rolling, in which the basic ingot is processed into standard forms of billets, sheet, plate, rod, and wire, will be referred to as primary forming operations. Bending, extrusion, drawing, spinning, in which these standard forms are further fabricated, will be referred to as secondary operations.
Continue reading