Microstructures in Austenitic Stainless Steels

Austenitic steels may undergo microstructural changes during short- or long-term exposure to high temperature. In the case of longer ageing times, other precipitates such as intermetallic phases are formed, which are usually accompanied by dissolution of carbides.
The intermetallic precipitations are of great interest not only because they exert influence on the mechanical properties but also because of their strong effect on the corrosive properties.

Continue reading

Ultra Low Carbon Bainitic Steels: Part Two

Although one of the most hotly debated microstructure topics, control of bainitic transformation can lead to a range of diversified gains over the mechanical properties of the finished product.
Specific studies of the relationship between cooling rate and finished cooling temperature show interesting findings related to the distribution of granular bainite, martensite-austenite constituent, bainitic ferrite, and polygonal ferrite.

Continue reading

Fatigue, Fracture and Microstructure Relationships of an Aluminum Automobile Component

Aluminum alloys are progressively used in the automobile industry due to several advantages such as low specific weight, good formability, good corrosion resistance and a nice surface appearance. The standard production forming processes such as extrusion and forging, can give rise to large variations in the tensile, fatigue and fracture properties. In AlMgSi alloys (6061, 6062, 6060 and 6082), yield stress have been shown to have only a weak dependence on grain size. However, a large part of the variations in other properties can be traced back to differences in grain size.
Continue reading