Bronze alloys exhibit very good toughness, strength, corrosion resistance, electrical conductivity, and thermal conductivity.
As one of the oldest alloyed materials a range of applications exist to take advantage of the various positive characteristics such as high load bearings, bushings and hydraulic cylinder parts. Continue reading
Category Archives: Corrosion
The Nitrocarburizing Process: Part Three
Nitorcarburizing is typically performed on steel components to improve surface hardness of the material via nitrogen dispersion.
One noteworthy finding however suggests that the corrosion resistance of the treated specimen was less than that of the control and untreated part. Continue reading
Low Temperature Carburizing of Austenitic Stainless Steel: Part One
Although austenitic stainless steels are among the most commonly applied corrosion resistant steels challenges exist related to their relatively poor surface hardness and wear resistance.
Low temperature carburizing presents an effective solution to these challenges by increasing surface hardness through a carbon rich diffusion zone which does not compromise the corrosion resistance of the material. Continue reading
Lean Alloy Steels
Rising prices of certain alloying elements such as nickel and molybdenum have driven recent work on lower priced replacements for austenitic stainless steels.
Progress has been made in finding suitable replacements but there are some key open questions remaining regarding the performance of the materials in specific applications. Continue reading
Corrosion Fatigue
Corrosion fatigue occurs through accumulated load cycling resulting in localized irreversible cyclic plastic deformation with as a result of chemical or electrochemical reactions.
Fatigue is already often described as the most common cause of engineering failure and when a corrosive environment is introduced, there are no guarantees for a safe stress range at all.
Corrosion Behavior of Copper Alloys: Part Two
Copper and copper alloys are specific in their corrosion behavior in that the initial corrosion rate of this group of materials is relatively high until protective layers form according to the alloy and the composition of the electrolytic solution.
One prime example of a material group which has found widespread use within the marine environment due to its excellent corrosion resistance are the copper-nickel alloys.
Corrosion Behaviour of Copper Alloys: Part One
Copper demonstrates excellent corrosion resistance in marine environments as well as showing strong abilities to withstand several other key localized corrosion forms which could potentially lead to failure.
Commonly weathered copper will go through a range of visual appearance transformations including the development of a brown patina within a few days of exposure and this will develop into the recognized green color over a period of 7-9 years.
Corrosion Protection of Steel: Part Two
Metallic coatings provide a layer that changes the surface properties of the work piece to those of the metal being applied. The work piece becomes a composite material exhibiting properties generally not achievable by either material if used alone.
Metallic coatings are deposited by electroplating, electroless plating, spraying, hot dipping, chemical vapor deposition and ion vapor deposition.
Corrosion protection of Steel
Corrosion of steel is an electrochemical reaction that requires the presence of water (H2O), oxygen (O2) and ions such as chloride ions (Cl–), all of which exist in the atmosphere. Electrophoretic deposition is a process in which electrically charged particles are deposited out of a water suspension to coat a conductive part. The process is more commonly known as electrocoating or E-coating.
Titanium Corrosion Properties: Part One
Titanium is well known for its extremely tough characteristics in severe environments with specific applications in the chemical process industry, energy, desalination, military and many more.
The most important properties of titanium in relation to corrosion resistance are its immunity to both pitting and stress corrosion.