Deep Drawing of Aluminum Alloys: Part Two

Deep drawing is one of the most intensively studied process areas due to its close relationship with the automotive industry with focus not only on visual appeal but also paramount safety concerns.
However the most important benefit of using aluminum materials in the forming of automotive body parts is the high weight loss factor associated with these materials.

Continue reading

Deep Drawing of Aluminum Alloys: Part One

Driven by the notoriously high demands of the automotive industry the quest to find more efficient, cheaper and better quality methods to produce materials is ever present.
Deep drawing, the process of turning sheet metal into hollow parts, is a critical production process and from the measurement of certain material properties it can be seen that aluminum has favorable performance when compared to steels.

Continue reading

Fatigue Properties of Aluminum Alloys

A continuous drive for lighter and better performing materials in the aerospace industry has led to progressive work regarding aluminum alloys.
Testing of the durability of the material through fatigue testing is absolutely essential to ensure the application of the material is suitable before moving through the expensive design process and further into product realization.

Continue reading

Formability Testing of Aluminum Sheet Materials

There will always be a need for formability tests. The effect of composition and processing modifications on formability must be determined during alloy development, preferably without resorting to expensive field forming trials in the initial stages.
Tests are often needed in the analysis of field forming problems requiring the comparison of problem lots to a data base. Tests are also needed for quality assurance, especially since it appears that many sheet users are working toward the use of test results as acceptance criteria.

Continue reading

The Extrusion Process of 6000 Alloys

Although extrusion processes vary considerably in detail, they are identical in principle. The press consists of the die, a pressure cylinder, the ram, and a container which receives the preheated ingot, or billet, to be extruded. The billet to be extruded is placed in the cylinder which is closed at one end by the die and at the other end by the ram. The metal is forced, by ram pressure, through the die, taking the shape of the orifice in the die.

Continue reading

Fatigue behavior of Al-Si-Mg alloys: Part One

The engine block works under mechanical and thermal cyclic stresses in relative motion with other engine parts. High fatigue strength and good wear resistance are critical properties to engine block life.
Each specimen was tested under uniaxial cyclic loading using Instron 8032 system. To investigate the fatigue behavior of Al-Si-Mg alloy, specimens were exposed to different stress amplitudes from 115 to 185 MPa.

Continue reading

Wrought Aluminum Alloys for General and Special Applications: Part Two

Super plasticity is the property of certain metallic materials that very high elongations without contraction till breakage can be achieved at suitable working conditions. These elongations are from few hundred to 1000% or even more. Such a method of working occurs at low strain rates, high working temperatures, and corresponding microstructure of material. Needed working stresses values are considerably lower than in working ordinary materials. Excellent work abilities enable wide range of applications of super plastic materials for various purposes.

Continue reading

Wrought Aluminum Alloys for General and Special Applications: Part One

The main groups of aluminum alloys which are the most often used in practice besides technically pure aluminum are AlMn, AlMg, AlMgMn, AlMgSi, AlZnMg, and AlZnMgCu alloys. These are wrought alloys which are shaped into products by rolling, extrusion, and forging. Each of the mentioned groups consists of numerous subgroups, depending on amounts of main and additional alloying elements, and they have tensile strength values varying in a wide range from 70 to 600 MPa.

Continue reading